博客
关于我
ACM MM‘24 | 医学图像分类中类别增量学习的不平衡问题解决方法
阅读量:798 次
发布时间:2023-04-05

本文共 349 字,大约阅读时间需要 1 分钟。

论文信息

地址不平衡问题在医学图像分类中的类别增量学习方法
作者:Xuze Hao, Wenqian Ni, Xuhao Jiang, Weimin Tan, Bo Yan

论文创新点

提出CIL平衡分类损失函数:针对类别不平衡导致的分类器偏向新类和多数类问题,提出CIL平衡分类损失函数。该函数通过基于类别频率调整logit,对稀有类别给予更多关注,还引入缩放因子,进一步平衡新旧类别,有效减少分类器偏差。

设计分布边际损失函数:为解决类别增量学习中,新旧类别在特征空间易重叠的问题,设计了分布边际损失函数。此函数包含两个损失项,一项推动旧类样本远离新类分布。

转载地址:http://gvrfk.baihongyu.com/

你可能感兴趣的文章
mysql主从配置
查看>>
MySQL之2003-Can‘t connect to MySQL server on ‘localhost‘(10038)的解决办法
查看>>
MySQL之CRUD
查看>>
MySQL之DML
查看>>
Mysql之IN 和 Exists 用法
查看>>
MYSQL之REPLACE INTO和INSERT … ON DUPLICATE KEY UPDATE用法
查看>>
MySQL之SQL语句优化步骤
查看>>
MYSQL之union和order by分析([Err] 1221 - Incorrect usage of UNION and ORDER BY)
查看>>
Mysql之主从复制
查看>>